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Abstract

The results from a numerical simulation of microgravity bubbly gas-liquid two-phase flow are presented
and compared against experimental data collected during parabolic flights on NASA’s KC-135 aircraft.
The simulation produced comparable results for the drift velocity and the rate at which bubbles move
towards the center of the tube. The simulations were done for a range of parameters; including the liquid
Reynolds number (1000-25,000), the bubble size relative to the tube diameter (0.1-0.3), surface tension
(7.28 x 1072-2.18 x 107! N/m), and tube diameter (9.525-40 mm). The results showed excellent compar-
isons with the bubble shape and evolution, the magnitude of the drift velocity, and the distance that the
bubble moves towards the tube center. It was concluded that the bubble diameter, radial bubble position,
liquid Reynolds number, and tube diameter all have major influence on the drift velocity. © 2001 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

The behavior of two-phase, gas-liquid mixtures has been extensively investigated during the
past five decades. Recently, access to near weightlessness environment (known as “microgravity’’)
has allowed researchers to study two-phase flows in the absence of gravity-induced buoyancy
effects. The subject of this study is to utilize the microgravity environment in predicting the drift
velocity in bubbly flow. This is of particular interest since many of the body forces acting on a
bubble are small compared to buoyancy, and their effects are severely masked by buoyancy effects
under normal gravity conditions.
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One important aspect in predicting bubbly two-phase flow is to determine the void fraction
distribution across the flow channel width. To illustrate the significant effect that gravity imposes
on the radial gas void fraction distribution in a conduit, data for upward vertical flow (Serizawa
et al., 1975), downward vertical flow (Wang et al., 1987), and microgravity (Kamp et al., 1993) are
shown in Fig. 1. The plot gives the void fraction, ¢, as a function of a dimensionless distance
measured from the tube center (r/R). The 1-g upward dispersed bubbly flow exhibits the typical
“saddle” shape with the highest void fraction and bubble density concentration near the wall of
the tube. The downward flow has a “square” distribution with the maximum bubble density
farther away from the wall and then mostly flat along the remainder of the cross-section of the
channel. The microgravity void distribution, on the other hand, shows a parabolic profile similar
to that obtained in single-phase flows with a distinct maximum at the center of the channel.

In the past, bubbly flow modeling has centered around the two-fluid model of Ishii (1975),
which is based on a time-averaging technique for both phases. Several researchers have used the
two-fluid model to predict the radial void profile; e.g., Drew and Lahey (1982), and Antal et al.
(1991). Most modeling efforts were limited to 1-g flows, and very little work has been done for
microgravity flows.

Among the very few efforts to model such flows at p-g are those reported by Lahey and Bonetto
(1994), and Singhal et al. (1996). In their experimental work they simulated microgravity by using
neutrally buoyant particles (or oil) at very low void fractions (0.07-0.21%). The resultant bubble
sizes (<400 um) are not of practical application to the p-g environment. In microgravity condi-
tions, higher void fractions are usually encountered and the diameter of the spherical bubbles is in
many cases larger than 50% of the tube diameter. More recently, Lin and Rezkallah (1995) de-
veloped a numerical two-fluid model to predict the void fraction distribution and turbulence
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Fig. 1. Typical void fraction profiles for upward flow (Serizawa et al., 1975), downward flow (Wang et al., 1987), and
microgravity flow (Kamp et al., 1993).
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structure in bubbly flow under p-g conditions. As part of their model, a drift velocity resulting
from a lift force acting on the bubble was included as a major contributor to the development of
the void fraction profile. The lift force is the net force acting radially upon a gas bubble moving
through a liquid velocity field (non-stagnant). The lift force will move the bubble either towards
the center of the pipe or close to its wall depending on the direction of the net force acting on the
bubble.

Most lift force expressions, including the one used earlier by Lin and Rezkallah (1995), have
been derived for the normal gravity condition. This limits their use in p-g conditions due to the
significant reduction in gravitational force, and hence the net forces acting on a bubble. The two
most prevalent lift force models at 1-g are those of Saffman (1965, 1968), and Drew and Lahey
(1987). Their dependence on a interphase slip velocity (due to buoyancy) makes them inappro-
priate for microgravity where the slip velocity in bubbly flow approaches zero. The no-slip
condition in p-g bubbly flow was further studied and confirmed by Rezkallah and Nakazawa
(1998), who also showed that outside the bubbly flow regime a positive slip ratio exists for other
flow regimes, even at microgravity.

One expression that was derived for I-g data but could be applied to p-g is that of Cox and Hsu
(1977). In the model, the lift force was placed in the form of a drift velocity (Vg ), and was solved
for a small neutrally buoyant bubble (which in our case simulates the microgravity condition).
The drift velocity, Vyn, in the Cox and Hsu model is given by

1 a3U02 R—r R—r
Vdrift—vaRz<1_ R )(61_184 R >a (1)

where a is the bubble radius, R is the tube radius, r is the distance from bubble to tube center, U is
the maximum liquid velocity, and vy is the liquid kinematic viscosity.

The limitations of this model are due to the assumption of creeping liquid flow and it only
applies to very small non-deformable bubbles (particle flows). Its inclusion in the model of Lin
and Rezkallah (1995) shows the limitations of the current lift force and drift velocity modeling.
The high liquid velocities and large bubbles of p-g flows exhibit a different mechanism of motion;
this is illustrated in Fig. 2. In that figure, the Lin and Rezkallah’s model is compared to the p-g
experimental data of Kamp et al. (1993). The numerical model predicts a maximum void fraction
away from the centerline in contrast to the clearly distinct maximum at the centerline of the
experimental data. The drift velocity expression of Cox and Hsu (1977) predicts that bubbles near
the wall would move towards the center and that bubbles near the center would move towards the
wall, hence the maximum void fraction is somewhere in between. This also contradicts the p-g
experimental data. To improve upon the modeling of void fraction profiles in the microgravity
case, the drift velocity model must be first improved.

One method that shows promise in providing a better understanding of drift velocity in mi-
crogravity is the interface tracking technique. Interface tracking methods have allowed re-
searchers to simulate the motion of individual gas bubbles in a liquid flow using computational
techniques. The volume of fluid (VOF) method proposed by Hirt and Nichols (1981) is one such
technique used by Tomiyama et al. (1995) to examine several different problems including Taylor
bubble shapes, the interaction of two bubbles rising in a stagnant liquid and the lateral migration
of a two- dimensional bubble in a linear shear flow. The lateral migration of a two-dimensional
bubble in liquid shear followed the expected behavior. For a large bubble, the bubble deformed
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Fig. 2. Predicted and experimental void fraction profiles in p-g flow (Lin and Rezkallah, 1995).

into a wing-shape and then proceeded to move to the region of higher velocity (coring) which
reflects what has been previously observed for bubbles larger than 5 mm in diameter. For a small
non-deformable bubble, the simulated bubble moved to the side of lower velocity reflecting the
wall-peaking seen in the experimental studies. Beyond the two-dimensional bubble simulation,
Tomiyama et al. (1995) extended the code to model three-dimensional bubbles as well.

By using a simulated bubble in microgravity conditions, the effect of various parameters could
be observed by varying more parameters that could significantly affect the bubble motion and by
observing the lateral motion of a single bubble within a liquid flow. Hence, a better understanding
of the mechanism of drift velocity at microgravity can be attained.

2. Mechanism of drift velocity

The lift force and drift velocity forces are in fact two byproducts of the bubble drag in the
constitutive relations of the two-fluid model. It is helpful to refer to Fig. 3 to become familiar with
the geometry and forces involved in the lift force. When the hydrodynamic force on the bubble is
estimated, there is a component of the force that is parallel to the flow direction. Perpendicular to
this force is the lift force component responsible for the bubble drift velocity. Video images of
microgravity two-phase flow regimes were collected in a series of experiments performed since
1988 by the Microgravity Research Group. The video sequences reported by Lowe and Rezkallah
(1999) for water—air in a 9.525 mm tube clearly show the behavior of individual gas bubbles in
microgravity. Using the Matrox Inspector software for PC computers, video images were digitized
for image processing and analysis. Fig. 4 shows three typical images of bubbly flow at three su-
perficial liquid velocities (¥5), ranging from 0.74 to 2.53 m/s. Fig. 4(a) (V5. = 0.74 m/s) shows
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Fig. 3. Force balance on a bubble near a wall.
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Fig. 4. Bubbly flow images at increasing liquid velocity in p-g (air-water D = 9.525 mm); (a) Vs =0.74 m/s,
Vs = 0.09 m/s, (b) Vs = 1.72 m/s, Vsg = 0.074 m/s, and (c) Vs = 2.53 m/s, Vsg = 0.067 m/s.
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mostly large, nearly spherical bubbles of diameters up to 5 mm (almost half the tube diameter),
interspersed with small scattered bubbles. In contrast, Fig. 4(b) shows bubbles that are smaller in
size and have become deformed and also elongated in shape. Such deformation is attributed to the
increased liquid velocity, and hence the shear force acting on the bubbles. The deformation of the
bubbles is even more obvious in Fig. 4(c) for the case of V5. = 2.53 m/s. Significant elongation
can be seen in the smaller bubbles while the larger bubbles are often deformed into erratic shapes
due to the surrounding turbulent flow. The liquid shear acting upon the bubbles increases with
increasing the Reynolds number, causing the bubbles to deform away from the spherical shape
caused by surface tension forces acting on the bubbles. It should be noted that great care was
taken that surface deformation due to optical path bending is minimized. This was accomplished
by placing the acrylic test section tube inside a light path correction box (see Lowe and Rezkallah
(1999) for more details).

Careful observation of the video sequences shows several examples of bubbles moving towards
the center of the tube as they pass through the camera’s field of view. Three examples of bubbles
moving laterally within the viewing section (5 cm long) are shown in Fig. 5. Each image shows a
single isolated bubble as it moves through the viewing section. The surrounding bubbles have been
removed for clarity and the five separate bubble images have been combined into one single image
for better comparison of shape and position within the tube as the bubble travels downstream. In
Fig. 5(a), Vs = 0.74 m/s, and while the bubble does not deform appreciably as it passes through
the viewing section, the motion of the bubble towards the center is clearly seen. The bubble se-
quences for V5 = 1.72 m/s, and V5, = 2.53 m/s show progressively more bubble elongation and
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Fig. 5. Bubble sequences at increasing liquid velocity in p-g (air-water D = 9.525 mm); (a) Vs = 0.74 m/s,
Vsc = 0.09 m/s, (b) Vs = 1.72 m/s, Vsg = 0.074 m/s, and (c) Vs = 2.53 m/s Vsg = 0.067 m/s.
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radial motion with increasing the liquid velocity. It is interesting to observe that the bubbles
return to a more spherical shape once they reach the core region of the tube. The wing-like
elongation of the bubbles, shown in Figs. 5(b) and (¢) would appear to be the result of a higher
liquid shear around the bubbles. This aspect will be discussed later in some detail.

The mechanism of bubble motion in a turbulent liquid flow at microgravity conditions has not
been previously investigated in the literature. The large deformable bubbles in microgravity two-
phase flow are the source of difficulty in adequately modeling the lift force or drift velocity. Most
previous work has approximated a bubble as a solid sphere. While this is reasonable for small
bubbles, the tendency of large bubbles to deform adds another complexity to the problem of
accurately predicting the drift velocity and the lift force. The motion of a large bubble is de-
pendent upon its shape and the flow of liquid around the bubble surface. The shape of the bubble
influences the liquid flow around it and vice versa. It is therefore necessary to consider effects such
as the forces acting upon the surface of a bubble (through the boundary conditions which sub-
sequently dictate the shape of the bubble), the flow of the liquid around the gas bubble and more
specifically, to investigate the dynamics at the gas bubble/liquid interface.

The no-slip condition, usually assumed for p-g bubbly flows, indicates that a bubble moving
axially along the tube surface in a shear flow would experience a relative velocity in the upstream
direction near the wall-side. At the tube center, the bubble would experience a downstream rel-
ative velocity. This shear force acting on the bubble would ““stretch out” the bubble into what is
seen as an ellipsoidal bubble.

The surface stress boundary condition at the interface is made up of two parts: tangential and
normal stresses. The tangential stress on the interface is given by the following equation

o, U] _ [, (W 3] 2 o)
H Os Om 1_ H Os on )|, Os’

where s refers to the tangential direction, n to the normal direction, U is the liquid velocity, and
the subscripts 1 and 2 refer to phases 1 and 2, respectively. The normal stress is given by

ou, ou,
(P 2u > >1 = (P 2u o >2 oK, (3)
where P is the pressure, u is the viscosity and « is the curvature of the interface.

If the change in surface tension along the surface is assumed to be negligible (because of the
absence of a temperature gradient or surface contamination), the tangential stress equation
represents a balance between the viscous forces on each side of the interface. The liquid flow
around the bubble surface stretches it into a wing-shape as seen in Figs. 5(b) and (c), where the
surface tension has been “overpowered” by the high liquid shear. Conversely at lower liquid flow
rates the surface tension is the dominant force and spherical bubbles, such as the one shown in
Fig. 5(a), are observed. The bubble elongation caused by the forces acting on the bubble interface
appears to be a major contributor to the lateral motion of the bubble towards the tube center.
This also will be discussed later in some detail.

Reviewing the interface boundary conditions, it can be stated that the bubble shape and drift
velocity are influenced by the liquid velocity, fluid viscosity, and surface tension. Also, the bubble
size must have some effect on the drift velocity. The latter will affect the shape of the bubble in that
the radius of the interface curvature changes with bubble size. The liquid shear surrounding the
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bubble is dependent upon the location of the bubble with respect to the tube wall, especially in
turbulent flows. In turbulent flows, high velocity gradients exist near the walls and are reduced
towards the center of the tube. Thus, the bubble position will also be a significant factor in the
prediction of the drift velocity.

3. Analysis
3.1. Dimensional analysis

Assuming that no mass or heat transfer occurs across the bubble interface, inertial and viscous
forces within the gas bubble are negligible, constant surface tension, the drift velocity of a single
bubble in a moving liquid flow within a cylindrical tube is a function of the following flow pa-
rameters and liquid-phase properties:

Viritt :f(U7d>SaD7anuL70-)' (4)

A dimensional analysis was performed on the dependent parameters and the result was the fol-
lowing dimensionless groups: dimensionless drift velocity (V'*), a dimensionless distance from the
wall (f5), a dimensionless bubble diameter (y), the liquid Reynolds number (Re), and the liquid
Weber number (We). The parameters and dimensionless groups are summarized in Table 1. The
dimensional analysis yields a dimensionless bubble drift velocity as a function of the following
dimensionless variables:

Ve :f(ﬂa%R@ We) (5)

3.2. Test matrix

A test matrix was generated from the dimensionless groups to test the effect of independently
changing each variable in Eq. (5) above. Eleven test cases were developed; these are summarized in
Table 2. The case for a 9.525 mm tube with Re = 25,000, f = 0.185, y = 0.2 and We = 805 was
chosen as the “‘basic case.” With the basic case as a reference, one parameter was changed at a
time to determine its influence on the drift velocity. It should be noted that when liquid velocity is
changed, both Reynolds and Weber numbers are affected. A total of 11 numerical simulation tests
were required to determine the influence of each individual parameter on the motion of a single
bubble in a microgravity turbulent flow.

The test matrix chosen for this study allows practical two-phase flow conditions to be inves-
tigated. The Reynolds number for the numerical simulations covered a range from 11,000 to

Table 1

Dimensional analysis

Parameters Dimensionless groups
U7d7SaD7 PL, ML, O VJr: V:jrift/U7 ﬁ:S/D

y=d/D, Re=DUp /i
We = DU?p, /o
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Table 2

Summary of simulation parameters and drift velocity

Case Simulation parameters Simulation Maximum drift

notation conditions velocity, V.|

Test 1 p =0.185, D = 9.525 mm, We = 805, y = 0.20 VsL = 2.47 m/s, 0.0639
Re = 25,000

Test 2 p=0.185, D =9.525 mm, We = 805, y =0.10 Vs = 2.47 m/s, 0.0337
Re = 25,000

Test 3 p =0.185, D =9.525 mm, We = 805, y = 0.30 VoL = 2.47 m/s, 0.0701
Re = 25,000

Test 4 p =0.235, D =9.525 mm, We = 805, y = 0.20 VsL = 2.47 m/s, 0.0457
Re = 25,000

Test 5 f =0.286, D = 9.525 mm, We = 805, y = 0.20 Vs = 2.47 m/s, 0.0269
Re = 25,000

Test 6 p =0.185, D =9.525 mm, We =401, y = 0.20 VoL = 2.47 m/s, 0.0485
Re = 25,000

Test 7 p=0.185, D = 9.525 mm, We = 268, y = 0.20 VsL = 2.47 m/s, 0.0415
Re = 25,000

Test 8 fp=0.185, D =9.525 mm, We =419, y = 0.20 VoL = 1.78 m/s, 0.0505
Re = 18,000

Test 9 p =0.185, D =9.525 mm, We = 155, y = 0.20 Vs = 1.09 m/s, 0.0337
Re = 11,000

Test 10 p =0.185, D = 40.0 mm, We = 215, y = 0.20 VsL = 2.47 m/s, 0.0423
Re = 25,000

Test 11 p =0.185, D =25.0 mm, We =364, y =0.20 Vs = 2.47 m/s, 0.0208
Re = 25,000

25,000. In contrast, most drift velocity models, by mathematical necessity, were only derived for
creeping flows. The bubble sizes, relative to the tube diameters, covered a range from 0.1 to 0.3,
where previous correlations assumed that the bubbles were far smaller than the tube diameter. In
addition, large deformable bubbles introduce the effects of surface tension on the motion of the
bubble. The surface tension itself varied from 7.28 x 1072 N/m (for water) to 2.18 x 1072 N/m,
giving a Weber number in the range of 155-805. The tube diameter was varied from 9.525 to 40
mm, which corresponds to the available microgravity experimental data range of tube sizes.

4. Simulation
4.1. Numerical simulation

The CFD software FLUENT®© (Release 4.4, 1996) was used to simulate the motion of a single
bubble in a liquid flow through a tube of a circular cross-section. This version included the VOF
computational method developed by Hirt and Nichols (1981). This method simulates multiphase
flows with a defined interface between the two phases. The VOF model has a single set of mo-
mentum equations shared by the two fluids, and the volume fraction of each phase is recorded
throughout the solution domain. It includes the surface tension model of Brackbill et al. (1992).
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Turbulence is introduced by the conventional k—¢ model with the standard wall function in the
near wall region.

It was necessary to determine the suitability of the numerical code in solving two-phase flows
involving a moving interface. A deformable air bubble rising from an initial condition of rest in a
liquid reservoir to its final terminal velocity was chosen as the benchmark problem. The simulated
bubble compared well to experimental data by Grace (1973); more details on this benchmark
simulation are given in Clarke (1999).

The simulation of a bubble moving transverse by the liquid flow direction in a tube is more
complicated than the case used in the benchmark problem. The problem is, by definition, three-
dimensional, but processing time makes it difficult to solve it in a reasonable amount of time. Like
early solutions of the bubble rise velocity in a stagnant liquid, the two-dimensional approximation
was used.

4.2. Simulation set-up

The simulation of a single bubble moving in a turbulent liquid flow in microgravity requires

several assumptions to be made. These are:

1. No significant mass or heat transfer across the bubble interface.

2. The inertial and viscous forces within the gas bubble are assumed to be negligible due to the
large difference in density and viscosity between air and water.

3. The surface tension around the surface of the bubble is assumed to be constant.

4. The bubble is approximated as a two-dimensional object.

The last assumption is particularly important when interpreting the results of the bubble simu-

lation. What is actually being simulated in a two- dimensional case is a cylindrical bubble moving

in an infinite channel. This means that three-dimensional effects, such as those caused by the

curvature of the tube surface and the bubble’s surface, will not be accounted for in the simulation.

This is significant, especially in cases where large bubbles exist very close to the tube wall (such is

the case in this study). As well, the surface tension effects are reduced to a single curvature radius,

and therefore the pressure difference across the bubble interface is reduced in the two- dimensional

approximation. Physical properties of the liquid phase used in the simulation were chosen for a

temperature of 20°C and at normal atmospheric pressure. This relates well to the conditions

experienced during most of the microgravity experiments used later for comparison.

To limit the computer requirements of the solution, the bubble was chosen as the frame of
reference, while the liquid velocities were defined in terms of their relative motion with respect to
the bubble. This allows for a much shorter length of domain to be simulated and thus a faster
solution. Previous results of numerical simulations of bubble motion in a tube were reported
earlier by Tomiyama et al. (1995), who showed that reasonable results could be produced with a
bubble as small as 6 cells in diameter. Our own simulations showed the behavior of bubbles
simulated using 18 cells, 12 cells, and 6 cells had similar velocity, shape, and motion. Therefore a
domain of 30 by 120 cells provided a good balance between simulation domain size and ac-
ceptable solution time.

Boundary conditions were chosen such that the inlet boundary has a fixed velocity profile
typical of that for a turbulent flow. The initial shape of the liquid velocity profile at the inlet is
modeled after the two-phase liquid velocity data reported by Kamp et al. (1993). This initial
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velocity profile is copied across the entire domain so that the liquid within the domain is assumed
to be already in motion at £ = 0. The liquid is allowed to enter and exit the outlet as needed. Only
half of the channel is modeled since axial symmetry about the centerline were substantiated during
initial trials. A no-slip boundary condition was assumed at the wall. The wall was also assumed to
be moving with the same velocity as the liquid adjacent to it because of the bubble being the
reference frame.

With the initial conditions set arbitrarily for a specific liquid velocity profile across the channel
and a spherical bubble placed in the flow, simulations were performed for this “artificial” con-
dition. This is especially true near the bubble where the solution must eventually evolve into the
proper pressure distribution and velocity profile once the simulation started. Therefore data from
the early part of the simulation (as the bubble undergoes its initial deformation into an elongated
shape before it starts moving away from the wall towards the tube’s center), must be treated with

caution. Finally, the convergence and residual limits for each time-step of the solution were set to
0.00001.

4.3. Typical simulated bubble

A general discussion of the behavior of individual bubbles as each dependent parameter is
changed is valuable in predicting the bubble motion under a variety of flow situations. Generally,
all simulation results have the same basic characteristics with the only change being the magnitude
of forces acting on the bubble. Hence, a single simulation was chosen to view, in some detail, the
mechanism of drift velocity. Referring back to Table 2, the simulation chosen for detailed dis-
cussion was Test 8 (f = 0.185, D = 9.525 mm, Re = 18000, We = 419, y = 0.20).

The simulation results of the evolution of the shape of the bubble as it moves from its
initial position to its final position close to the centerline is shown in Fig. 6(a). The bubble

(a) (b)

Fig. 6. Bubble sequences for bubble at Re = 18,000; (a) Simulation, and (b) Experimental.
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starts with an initially spherical shape in the liquid flow field and immediately starts to
elongate as the liquid velocity gradient acts to ‘“‘stretch” the bubble. This “‘stretching” of the
bubble continues until a balance is reached between the liquid forces acting upon the bubble
interface and the surface tension of the bubble. Because of the higher liquid velocity gradient
acting on the wall-side of the bubble, a “tail” of gas is pulled towards the wall which tends to
cause a very small initial drift velocity towards the wall. Once the bubble elongates, it then
starts to move quickly towards the centerline and out of the region of high liquid shear to
lower shear. As the tail of the bubble exits the high shear area, it is pulled back into the
bubble forming a more ovaloid shape. The shape of the bubble continues to return to a nearly
spherical shape as it approaches the centerline, and the drift velocity of the bubble steadily
decreases. The liquid shear acting on the bubble continues to decline and a critical value of
the velocity gradient is arrived at where the bubble will no longer continue traveling towards
the center. Notice that the bubble does not return entirely to its initial spherical shape because
it is still subjected to a low shear. Comparing the simulation to a typical bubble from the
experimental data in Fig. 6(b) shows the similarity between them at various points in their
motion towards the center of the tube.

Examining the liquid velocity field around the bubble as it moves towards the centerline il-
lustrates the bubble evolution at different stages. Fig. 7(a) shows the simulation at ¢ = 0.02 s. This
is the point at which the bubble is moving towards the center with a maximum velocity. The liquid
velocity vectors are relative to the bubble velocity at # = 0 s (initial bubble position), and hence
clearly show the relative motion between the bubble and the liquid. The liquid on the wall-side of
the bubble is moving upstream (with respect to the bubble), while on the core-side of the bubble it
is moving downstream.

Referring back to the interface equations (3) and (4) helps us to explain the shape of the bubble
as it moves towards the center with the balance between the shear and surface tension forces.
Recalling the interface boundary conditions for a gas bubble in a liquid, a tangential stress is
applied to the bubble surface due to the viscous force of the fluid moving around the bubble, and
is considered to be the primary reason for the bubble’s elongation. This perhaps can be seen in
Fig. 7(a), where the liquid velocity vectors are pointed towards the ends of the bubble, resulting in
viscous stresses that elongate the bubble in the direction of the liquid velocity vectors. The normal
stress boundary condition shows that the pressure field in the liquid around the bubble is balanced
by the pressure inside the bubble and the surface tension forces. Thus, there exists two competing
forces acting on the bubble surface, the liquid flow which acts to deform the bubble and the
surface tension acting to retain the bubble’s spherical shape.

Fig. 7(c) shows the bubble at ¢t = 0.04, prior to reaching its final position. A comparison of the
bubble at ¢t = 0.02 and 0.04 illustrates the influence of the liquid velocity field around the bubble
and the balance between the liquid shear and surface tension. The first difference is in the shape of
the bubble as it is returning to a more spherical shape at ¢t = 0.04. The velocity field around the
bubble has also changed as seen by comparing Figs. 7(a) and (c). The bubble at z = 0.04 moves
faster in the downstream direction than it did at ¢+ = 0.02, as it moves into a higher liquid velocity
region near the centerline. The liquid velocity difference across the width of the bubble at ¢t = 0.04
is much smaller with correspondingly less circulation around the bubble. Lower liquid velocities
near the bubble act to reduce the effect of viscous forces at the interface, and hence surface tension
acts to return the bubble to a nearly spherical shape.
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Fig. 7. Liquid velocity and pressure fields for test 8; (a) velocity field at t = 0.02 s, (b) pressure field at t = 0.02 s,
(c) velocity field at t = 0.04 s, and (d) pressure field at = 0.04 s.

From the previous discussion it can be concluded that the shape of the bubble plays a signif-
icant role in its motion towards the center of the tube in p-g liquid flows. The motion of the
bubble is due to the liquid circulation and associated pressure field around the elongated bubble.
The pressure distribution around a bubble helps to explain how the mechanism of motion op-
erates. Fig. 7(b) shows the pressure contours around the bubble in Test 8 (at ¢+ = 0.02), where the
bubble is moving at maximum velocity towards the centerline.

As previously discussed, the bubble elongates into what can be termed as a “wing-shape”. This
analogy is useful in describing the flow of liquid around the bubble and possibly the cause for the
motion of the bubble towards the centerline. Consider an airfoil in a steady velocity field of
moving air. Discarding gravity terms, the balance of static and kinetic pressure between any two
points around the airfoil can be obtained from Bernoulli’s equation. According to Bernoulli’s
principle, a high fluid velocity is accompanied by a low-pressure region. For the airfoil, the fluid
accelerates over the top of the foil creating a low-pressure region that results in lift. The liquid
flow around an clongated bubble follows, more or less, the same trend as an airfoil. Where the
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relative liquid velocity around a bubble is high, a low-pressure zone will form and a net force on
the bubble surface will be realized.

The net force acting on the bubble can be divided into two components; a drag (stream-wise
component) and lift force (radial component). The lift force component is what forces a bubble to
move radially towards the channel’s wall or centerline. Distinct low-pressure and high-pressure
zones around the bubble are demonstrated in Fig. 7(b). There is a high-pressure region on the
wall-side of the bubble and a low-pressure zone on the core- side of the bubble. This pressure
difference creates a net lift force acting towards the center of the channel. The velocity vectors in
Fig. 7(a) clearly shows the source of the low-pressure and high-pressure zones. On the wall-side
there is a large area of little or no liquid motion (high-pressure), where surface flow along the
interface stagnates. On the core-side there is a comparatively high velocity (low-pressure) region
on the core-side.

As the bubble approaches the centerline at = 0.04, the pressure field significantly changes; this
is demonstrated in Fig. 7(d). The magnitude of the pressure differences around the surface of the
bubble is greatly decreased, and this results in a much smaller lift force acting on the bubble. The
bubble is moving at only a fraction of the velocity that it had at ¢+ = 0.02, which is also seen to
support the results from the pressure distribution around the bubble.

5. Comparison with experimental data

The results from the numerical simulation were compared to the video image data reported by
Lowe and Rezkallah (1999) in a 9.525 mm diameter tube. The recorded images were taken during
microgravity testing aboard the NASA DC-9 zero gravity aircraft. The simulation bubble and an
experimental bubble at Re = 18,000 were shown earlier in Fig. 6. The bubble deformation to-
wards the centerline can be clearly seen in both cases. Moreover, the video images also show that
the bubbles appear to move towards the center and return to a more spherical shape once they
reach the core area. The somewhat exaggerated magnitude of the bubble elongation seen in the
simulation could be attributed to the simulation being two- dimensional. As well, the interaction
between the bubble and the surrounding bubbles (not shown in the figure to avoid clutter), and
the presence of a wake region in the actual motion could have also contributed to the differences.

A quantitative comparison between the simulation and experimental results is done by com-
paring the maximum dimensionless drift velocity (V! ) of both the experimental and simulated
bubbles. The experimental data have liquid velocities as follows: Vs = 0.74, Vg = 1.78, and
VoL = 2.53 m/s (which correspond to liquid Reynolds numbers of 7900, 18,000 and 25,500, re-
spectively). These values compare well with the simulation Reynolds numbers of 11,000, 18,000
and 25,000. It is important to remember that for observations in the recorded images, the bubbles
appear on the screen for a short period (less than 0.10 s), and that the size of the bubbles was small
compared to the pixel resolution of the images. This provides for only a few data points (4-5) that
can be collected for each bubble trace. The error in the recorded position was based on a mea-
surement error of one pixel and for a 40 pixel measurement would equal +2.5% (depending upon
the length being measured).

Table 3 summarizes the comparison of the experimental to simulation data for the three
Reynolds numbers of 11,000, 18,000 and 25,000. The drift velocity was calculated by dividing
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Table 3

Comparison of experimental and simulation data

Case Vi Time to center (s) Distance moved (s/D)
Simulation Experimental Simulation Experimental Simulation Experimental

Re = 11,000 0.034 0.049 0.084 s 0.044 s 0.100 0.080

Re = 18,000 0.051 0.054 0.032's 0.019 s 0.194 0.063

Re = 25,000 0.057 0.064 0.024 s 0.011 s 0.172 0.090

the difference in position of the bubble from one time increment to the next by the time in-
crement. Comparing the values of maximum velocity shows that they are similar with a dif-
ference of 12% for the 18,000 and 25,000 cases but the difference was much larger in the
11,000 case. The larger difference in the latter case can be attributed to the much larger bubble
in the experimental data, which in turn would greatly increase its velocity towards the tube
center. The time that it took for the bubbles to move to a position in the center of the tube
are also similar. In all cases it took the experimental bubbles less time, but it is impossible to
tell whether they had reached their final position because the bubbles stayed in the viewing
area for such short times. In fact, comparing the radial distance that the bubbles moved, it is
possible to suppose that the experimental bubbles do not complete their motion to the center
while they are still visible in the viewing area. In all cases the simulation bubble moved farther
distances, and took more time to reach the center of the tube. Therefore the most important
evidence that the simulation adequately models the drift velocity phenomenon is the velocity
data that shows similar maximum velocities. Any differences between the two can be attributed
to differences between the experimental and simulation conditions. In actual flow the bubble’s
motion could be influenced by interaction with other bubbles, or the presence of a wake region
from preceding bubbles. It can thus be said that the general trends of motion, bubble shape,
bubble evolution, and time scale were very comparable to those obtained from the simulation
results.

6. Parametric study results

In the following section, we discuss the results from the parametric study using the test matrix
of Table 2. The examined parameters were the bubble size, bubble starting position, surface
tension effects, liquid Reynolds number and tube size. These will be discussed separately in the
following section.

6.1. Bubble size

The effect of changing the bubble size on the drift velocity is shown graphically in Fig. 8 where
all other parameters were held constant. The results are shown for three bubble-to-diameter ratios
ranging from 0.1 to 0.3. The bubbles all start at a common initial position and move towards the
centerline and stop their motion at a point away from the centerline. The slope of the lines in Fig. 8
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Fig. 8. Effect of bubble size on bubble position as a function of time.

Test v (=d/D) Vinax

2 0.1 0.0337
1 0.2 0.0639
3 0.3 0.0701

equals to the bubble velocity. As seen from the results summarized below the figure, the larger the
bubble, the greater is the drift velocity. The evolution of the bubble and its drift velocity can be
characterized by an initial period in which the bubble is elongating and accelerating in the liquid
shear flow. The bubble will then reach a maximum velocity at which point it decelerates and, as it
continues to move towards the centerline, it will eventually stop. This is due to the liquid shear
around the bubble decreasing to the point where it is no longer adequate to move the bubble to
the centerline. As the bubble decelerates, it also returns to a more spherical shape (as the liquid
shear acting to elongate the bubble is reduced).

6.2. Bubble starting position

The location at which the bubble is initially placed in the flow has some influence on its motion.
Fig. 9 shows the path of a bubble to its final position near the centerline for three initial starting
positions with each bubble starting progressively closer to the centerline (and hence in regions of
progressively less shear). All three bubbles end their motion at the same distance from the cen-
terline (s/D = 0.35), and they reach different maximum drift velocities. Considering the estimated
drift velocity values shown in Fig. 9, it is clear that the bubble starting at § = 0.185 attains the
highest drift velocity. This is expected since in this case, the bubble starts in a region of higher
liquid velocity gradients compared to the other two cases.
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Fig. 9. Effect of initial bubble position on bubble position as a function of time.
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6.3. Surface tension

The effect of changing the liquid Weber number (by changing the surface tension) on the drift
velocity can be demonstrated from the results shown in Fig. 10. A cursory observation of the
results may indicate conflicting trends. The high Weber number (We = 805), and thus low surface
tension bubble, does not seem to move any faster towards the centerline than the bubble asso-
ciated with We = 401, while the bubble with We = 268 has a slightly lower drift velocity. Con-
sidering the maximum drift velocity for the three Weber numbers, it can be seen that the We = 805
bubble has a higher maximum drift velocity than the We = 401 bubble. Hence, it could be con-
cluded that lower surface tension results in higher drift velocity. The drift velocity depends on the
surface tension to a lesser extent than seen previously with the bubble size. Generally, the drift
velocity appears to be closely related to the extent to which the bubble elongates as it moves
towards the tube center. Less elongation (which in this case is due to high surface tension) gives a
lower drift velocity.
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6.4. Liquid Reynolds number

The results due to increasing the liquid Reynolds number (through increasing the liquid ve-
locity) are shown in Fig. 11. It should be noted that as the Reynolds number increased, the Weber
number increased to a larger proportion due to the power that appears on the velocity term in the
Weber number. The bubble traces for all three Reynolds numbers in the turbulent flow regime
show that the drift velocity always increases with increasing the Reynolds number. This is clearly
shown in the numerical data below the figure. The Reynolds number appears to also influence the
distance from the centerline to which the bubble penetrates. This could be attributed to the effect
of a minimum liquid velocity difference across the bubble that is required to produce motion.

6.5. Tube diameter

Among all the parameters examined in this study, it was found that the tube diameter has the
most profound influence on the magnitudes and trends of the bubble drift velocity. This can be
clearly demonstrated from the results shown in Fig. 12. The simulation results show that as the
diameter increases, the drift velocity decreases for the same liquid Reynolds number. While all
three flows have the same liquid Reynolds number, referring to the equation for Reynolds number
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Fig. 11. Effect of Reynolds number on bubble position as a function of time.
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shows that the liquid velocity decreases as the tube diameter increases. This supports the results of
the previous section on the effect of the liquid velocity, where the drift velocity decreases with
decreasing the liquid velocity.

7. Conclusions

This paper presented a numerical simulation of the motion of a dispersed bubble in a liquid
flow under microgravity conditions. The simulation focussed on individual gas bubbles in a two-
dimensional flow, and the rate at which the bubbles move towards the tube center (the drift ve-
locity). Dimensional analysis determined the significant flow parameters to be the bubble size,
surface tension, liquid velocity, tube diameter, and the radial bubble position.

The drift velocity simulations were completed for 11 tests to cover the parameters deemed
significant from a dimensional analysis. The liquid Reynolds number was varied from 11,000 to
25,000. The bubble size relative to the tube diameter ranged from 0.1 to 0.3. The surface tension
varied from 7.28 x 1072 to 2.18 x 10! N/m; corresponding to a change in the liquid
Weber number from 155 to 805. The tube diameter was varied from 9.525 to 40 mm. The shape
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evolution, motion, and drift velocity of the simulated bubbles were compared to the experimental
data collected during actual microgravity testing aboard NASA’s DC-9 zero gravity aircraft.
The motion of liquid around a bubble causes it to elongate into an elliptical shape as it moves
towards the tube center. Consequently, the elliptical shape changes the flow of the liquid around
the bubble and hence the pressure field around the bubble. Integrating the pressure around the
bubble surface produces a net force acting on the bubble. The radial component is the lift force
that moves the bubble towards the tube centerline.

The following conclusions can be drawn from the numerical bubble simulation:

e Comparison of the simulation results with previous experiments showed the same tendency in
bubble shape and evolution, drift velocity magnitude, and the distance that the bubble moves
radially towards the tube center.

e The bubble drift velocity is dependent upon the magnitude of the bubble’s elongation into an
elliptical cross-sectional shape. The amount of elongation is a result of the balance of forces
acting on the bubble. Liquid circulation around the bubble tends to stretch the bubble towards
the tube center, while the surface tension acts against the liquid viscous force to maintain a
spherical shape. A more extreme bubble distortion alters the pressure distribution around
the bubble and increases the drift velocity.
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e Larger bubbles (d/D > 0.1) were found to elongate more than smaller bubbles and results in
higher drift velocities.

o Bubbles, initially closer to the wall, experience higher liquid velocity gradients which cause
higher drift velocities and more elongation.

e Bubbles in higher Reynolds number flows experience larger liquid velocity gradients and hence
higher drift velocities.

e Bubbles in larger tubes (D > 10 mm) experience less liquid shear, elongate less, and have cor-
respondingly lower drift velocities.

o Increases in surface tension also result in lower drift velocity and less bubble elongation.

The present study discarded several factors that were beyond the resources available for the

computer simulation of bubbly two-phase flow. In particular future studies that use a three-

dimensional bubble simulation would eliminate any two-dimensional phenomenon seen in the

results presented here. As well, experiments dealing with individual bubbles moving in microg-

ravity two-phase flow would be useful to verify bubble simulations directly.
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